
The Impact of MPI Queue Usage on Message Latency

Keith D. Underwood Ron Brightwell

Sandia National Laboratories∗

P.O. Box 5800 MS-1110
Albuquerque, NM 87185-1110

E-mail:{kdunder,rbbrigh }@sandia.gov

Abstract

It is well known that traditional micro-benchmarks do
not fully capture the salient architectural features that
impact application performance. Even worse, micro-
benchmarks that target MPI and the communications sub-
system do not accurately represent the way that applications
use MPI. For example, traditional MPI latency benchmarks
time a ping-pong communication with one send and one re-
ceive on each of two nodes. The time to post the receive is
never counted as part of the latency. This scenario is not
even marginally representative of most applications. Two
new micro-benchmarks are presented here that analyze net-
work latency in a way that more realistically represents the
way that MPI is typically used. These benchmarks are used
to evaluate modern high-performance networks, including
Quadrics, InfiniBand, and Myrinet.

1 Introduction

A significant challenge in the assessment of parallel
computers is the poor correlation of micro-benchmarks and
the way that applications use the system. This is particu-
larly prevalent in benchmarks that assess the performance of
the network subsystem and the MPI library. A particularly
egregious example of this is a standard ping-pong latency
benchmark. in which one node sends a single message to
another. After receiving the message, the second node sends
a reply. This is repeated several times to obtain an average
latency. On both nodes, the receive is posted outside of the
time measurements.

Recent work[6] indicates that applications deviate from
this behavior in two significant ways: they have numer-
ous receives that are pre-posted and many unexpected mes-

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

sages1. Increasing the number of posted receives increases
the amount of work that must be performed when a mes-
sage is received because the list of posted receives must
be searched to find a matching receive. In turn, unex-
pected messages increase the amount of work that must
be done when a receive is posted. Standard MPI micro-
benchmarks do not measure either scenario. Indeed, these
micro-benchmarks do not even measure the time required
to perform anMPI Irecv or MPI Recv as part of the
latency path. This fails to represent real applications in
what is measured (receives are a part of each computa-
tion/communication phase) and in how MPI queues are
used.

This paper presents two new micro-benchmarks that
analyze the behavior of an MPI implementation over a
given network in the presence of longer posted receive
queues and longer unexpected message queues. These
micro-benchmarks are then used to analyze four networks:
Quadrics[16], Myrinet[4], Infiniband[9], and the custom
network on ASCI Red[20]. Each of these systems takes a
slightly different approach to the integration of the network
with the node and a slightly different approach to MPI of-
floading. The results show that both the weight of the proto-
col and the speed of the processor have significant impacts
on message latency when the queues are heavily utilized.
This suggests that more processing capability needs to be al-
located to MPI processing — particularly for networks that
offload a portion of MPI.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work. Section3 describes the bench-
marks used while Section4 covers the experimental plat-
forms. Results are presented in Section5 followed by con-
clusions in Section6 and future work in Section7.

1Unexpected messages are MPI messages which arrive at a node before
a matching receive is posted using anMPI Recv or MPI Irecv



2 Related Work

The ping-pong latency benchmark has become a stan-
dard by which all high-performance networks are evaluated.
NetPIPE[19] and Netperf[1] are benchmarks that are com-
monly used to mesaure ping-pong latency, but it is almost
as common for individuals (or network vendors) to write
their own. With the advent of MPI, there has been sur-
prisingly little published research on more realistic latency
measurements. Our preliminary work in [17] presented a
new latency micro-benchmark that includes the variance
in transmission time, which the standard ping-pong bench-
mark does not reveal.

Overall, there have been some attempts at providing a
more complete set of micro-benchmarks that better charac-
terize the behavior of real applications and/or expose poten-
tial performance advantages that applications may leverage.
Our work in [10] is a micro-benchmark suite that measures
the potential for overlap that an MPI implementation of-
fers. Recent work in [11] contains results that use micro-
benchmarks to measure overhead, overlap potential, the im-
pact of buffer re-use, and memory consumption. Other
work has studied the impact of LogP[8] parameters on ap-
plication performance[14] as well as the LogGP[2] param-
eters of modern networks[3]. All of these provide a more
complete picture of the interaction of the application and
the network. This paper differentiates itself by focusing on
the impact of MPI queue usage scenarios that can occur in
applications. The new benchmarks presented here illustrate
how various queue usage scenarios can serve to increase
the overhead (or gap, depending on where queue process-
ing occurs) of the baseline hardware as defined by the LogP
model.

3 Benchmarks

Studying the impacts of MPI queue length on message
latency required two new benchmarks. Each is based on
a standard ping-pong benchmark with some modifications.
The first benchmark varies both the length of the pre-posted
receive queue and the portion of that queue that is traversed.
Ping-pong message latency is then measured in that context.
The second benchmark varies the length of the unexpected
queue and also measures the impact on message latency.

3.1 Pre-posted Receive Queue Impact

The benchmark designed to measure the impact of
changes in the pre-posted receive queue length provides
three degrees of freedom: the length of the pre-posted re-
ceive queue, the portion of the pre-posted receive queue that
is traversed, and the size of the message. This enables the

user to measure the impacts of both the receive queue length
and the impact of actual queue traversal.

Pseudo-code describing the benchmark on each of two
nodes is shown in Figure1. Each node must first post the
number of receives that are to be traversed when the actual
latency measuring message arrives. These receives use tags
that do not match the latency measuring message. This must
occur on both nodes since the ping-pong latency will be di-
vided by two to determine the one-way latency. Next, the
receive that matches the latency message is posted, followed
by the remaining queue entries that are requested (which
will not be traversed when the latency message is received).
Both nodes then enter a barrier operation that is designed
to insure that node 1 exits first (this is not the standard
MPI Barrier ) so that the barrier does not inadvertently
interfere with the latency measurement. Following this, the
standard ping-pong latency is measured and then the extra
receives that were posted are cleared out of the queue (by
sending a matching stream of messages).

Measurements for this paper use the average time from
1000 iterations of the core routine shown in Figure1. The
inner loop iterates 1000 times and sums the times from all of
the iterations. The time is divided by 1000 and then divided
by two to obtain a one-way latency measure.

3.2 Unexpected Message Queue Impact

The benchmark created to assess the impact of unex-
pected message queue length on message latency only al-
lows the length of the unexpected message queue and the
size of the message to be varied. It deviates from the tradi-
tional way of measuring latency in that it includes the time
to post the receive for the latency measuring message as
part of the latency. This better reflects the way that MPI
is actually used by applications, which typically have some
number of iterations and posts receives in each iteration.

Figure2shows pseudo-code for the benchmark that mea-
sures the impact of a long unexpected queue. The requested
number of unexpected messages is first sent to each pro-
cessor. The processors barrier in such a way that node 1 is
guaranteed to exit first. Then, node 0 does a non-blocking
send while node 1 waits on the message. The posting of
the receive (and thus traversal of the unexpected queue) on
node 0 is overlapped with this send. On node 1, a send is
performed as soon as the receive completes. When the ping-
pong latency timing is complete, the unexpected messages
are cleared by posting matching receives. The inner loop
is timed for 1000 iterations to obtain an average, and this
value is divided by two to obtain the one-way latency.

This benchmark required a number of design decisions.
First, node 1 exits the barrier first allowing some of the time
traversing the unexpected queue to be hidden. This was an
attempt to be as fair as possible in measuring the time. Oth-



prepost traversed receives();
post latency receive();
prepost untraversed receives();
barrier();
begin timer();
send message();
wait for response();
end timer();
clear receives();

prepost traversed receives();
post latency receive();
prepost untraversed receives();
barrier();
wait for message();
send response();
clear receives();

(a) (b)

Figure 1. Pseudo-code for pre-posted queue impact benchmark: (a) node 0, and (b) node 1

send unexpected messages();
barrier();
begin timer();
nonblocking send message();
post latency receive();
wait for response();
end timer();
clear unexpected messages();

send unexpected messages();
barrier();
wait for message();
send response();
clear unexpected messages();

(a) (b)

Figure 2. Pseudo-code for unexpected queue impact benchmark: (a) node 0, and (b) node 1

erwise, the extra time for node 1 to exit the barrier would
also be counted against the unexpected message behavior
of the network. The second design choice made was to per-
form the non-blocking send on node 0 so that the post of
the receive could be overlapped with it. Again, since this
benchmark deviates from the standard ping-pong test by in-
cluding the time to post a receive, a conservative choice was
made to allow the network as much opportunity for overlap
as possible.

4 Experimental Platforms

A number of platforms were evaluated using the newly
developed micro-benchmarks. In the commodity space,
Myrinet (Lanai-9), Quadrics (Elan3), and InfiniBand net-
work hardware was evaluated. Myrinet (Lanai-X) and
Quadrics (Elan4) hardware evaluations will be added as
soon as hardware becomes available. To constrast the com-
modity networks, the custom network on ASCI Red was
also evaluated. In addition to differences in hardware, dif-
ferences in programming models were considered for both
Quadrics and the ASCI Red network.

The Myrinet[4] Lanai9 evaluation platform contains dual
processor, 2.4 GHz Pentium-4 nodes, but only one pro-
cessor per node was used for testing. Each node has
2 GB of memory. The network used Lanai-9 (Myrinet
2000) adapters running GM[15]. The software used was

MPICH-GM on RedHat 7.3 with a Linux 2.4.20 kernel.
InfiniBand[9] testing was done using dual processor, 3.06
GHz Pentium-4 nodes, and again, only one processor per
node was used for testing. The network uses Voltaire HCAs
and switches to provide4× InfiniBand. The software stack
consists of MVAPICH[12] on RedHat 9.0 with a Linux
2.4.22 kernel.

The Myrinet[4] LanaiX evaluation platform contains
dual processor, 3.06 GHz Pentium-4 nodes, but only one
processor per node was used for testing. Each node has
2 GB of memory. The network used Lanai-X adapters run-
ning GM[15]. The software used was MPICH-GM on SuSE
Linux 9.0 with a Linux 2.4.25 kernel.

Quadrics[16] Elan3 hardware was tested on dual proces-
sor, 1 GHz Pentium-III nodes with 1 GB of memory. Elan3
network hardware was used with a RedHat 7.3 distribution
and a Linux 2.4.20 kernel. Two versions of MPI software
were used: the default MPICH variant from Quadrics us-
ing the TPorts API and a variant of MPICH 1.2.5 built at
Sandia[5] using the Cray SHMEM API[7].

Quadrics Elan4 hardware was tested on dual processor,
2 GHz Opteron nodes with 2 GB of memory. Elan4 net-
work hardware was used with a SuSe Linux Enterprise 8.0
distribution and a modified Linux 2.4.21 kernel. Two ver-
sions of MPI software were used: the default MPICH vari-
ant from Quadrics using the TPorts API and a variant of
MPICH 1.2.5 built at Sandia[5] using the Cray SHMEM



API[7].

Compared to the commodity platforms discussed, ASCI
Red[20] is a relatively unique system. It is a large-scale su-
percomputer comprised of more than 4500 dual-processor
nodes connected by a high-performance custom network
fabric. Each compute node has two 333 MHz Pentium II
Xeon processors. Each compute node has a network inter-
face, called a CNIC, that resides on the memory bus and
allows for low-latency access to all of physical memory on
a node. The CNIC interface connects each node to a 3-
D mesh network that provides a 400 MB/s uni-directional
wormhole-routed connection between the nodes. The CNIC
interface is capable of sustaining the 400MB/s node-to-node
transfer rate to and from main memory across the entire ma-
chine.

The software environment on ASCI Red is also sig-
nificantly different from the standard commodity model.
The compute nodes run Cougar, a variant of the Puma
lightweight kernel that was designed and developed by San-
dia and the University of New Mexico for maximizing both
message passing throughput and application resource avail-
ability [18].

Cougar uses a simple network protocol built around the
Portals message passing interface [18]. Portals are data
structures in an application’s address space that determine
how the kernel should respond to message passing events.
Portals allow the kernel to deliver messages directly from
the network to the application’s memory.

Cougar is not a traditional symmetric multi-processing
operating system. Instead, it supports four different modes
that allow different distributions of application processes
on the processors. The following provides an overview of
two of these processor modes that are relevant to this paper.
More details can be found in [13].

The simplest processor usage mode is to run both the ker-
nel and application process on the system processor. This
mode (proc 0 mode) is commonly referred to as “heater
mode” since the second processor is not used and only gen-
erates heat. In this mode, the kernel runs only when re-
sponding to network events or in response to a system call
from the application process.

In the second mode, message co-processor mode (or proc
1 mode), the kernel runs on the system processor and the
application process runs on the user processor. When the
processors are configured in this mode, the kernel runs con-
tinuously waiting to process events from external devices or
service system call requests from the application process.
Because the time to transition from user mode to supervisor
mode and back can be significant, this mode offers the ad-
vantage of reduced network latency and faster system call
response time.

5 Results

Each benchmark was used to measure each of the sys-
tems in question. These measurements highlight differences
in network hardware and system integration. They also
highlight distinct differences between the relative complex-
ities of the communication APIs that are used by the MPI
implementation on the networks by measuring more than
one API on a number of the platforms.

5.1 Pre-posted Queue Impacts

The length of the pre-posted receive queue has two dis-
tinct impacts on the latency of messages. First, a long pre-
posted receive queue has implications for resource usage
and resource management. Thus, even if most incoming
messages match the first entry, a long posted receive queue
can have a negative impact on message performance. Sec-
ond, each item traversed in the pre-posted queue takes many
processor cycles. This can significantly increase the time to
handle an incoming message. Graphs in this section show
message latency as the number of receives pre-posted is var-
ied from 0 to 1000 and the percent of that queue traversed
is varied from 0 to 100 to show both of these effects.

Figures3(f) and 4(e) and (f) show the impact of the
length of the pre-posted receive queue on InfiniBand,
Myrinet Lanai9, and Myrinet LanaiX, respectively. Even
with a 2.4 GHz (or greater) Pentium-4 handling the pre-
posted receive queue traversal, the latency impact of a long
queue is quite noticeable. Simply having a long queue has
no impact on latency; however, latency can be increased by
as much as 60% when a large fraction of that queue is tra-
versed. These increases in latency manifest themselves as
an increase in overhead (from the LogP model) when queue
traversal is handled on the host. This indicates a need for a
better data structure than a simple linear list, even when a
fast processor is handling the list traversal.

Figure3(a) and (b) compare the impact of the length of
the pre-posted receive queue on Quadrics Elan3 using the
TPorts and SHMEM APIs. This provides a direct compar-
ison between APIs that offload many of the MPI semantics
and APIs that do not on a single hardware platform. The im-
pact of the pre-posted receive queue on MPI over SHMEM
on Quadrics Elan3 (Figure3(b)) is comparable to the be-
havior of MPI on InfiniBand and Myrinet (when adjusted
for differences in host processor performance). The im-
pact on MPI over the TPorts API, however, is much more
drastic. At the baseline, increasing the length of the pre-
posted receive queue to 1000 entries (even if the first en-
try matches the incoming message) doubles the latency of
messages. Since TPorts offloads this queue onto the net-
work interface, this is likely due to a resource management
issue. As more items in that queue must be traversed to find



Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
50

100
150
200
250
300
350
400
450
500
550

Latency (microseconds)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

8
10
12
14
16
18
20
22
24
26

Latency (microseconds)

(a) Quadrics Elan3 using TPorts (b) Quadrics Elan3 using SHMEM

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

Latency (microseconds)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

4
5
6
7
8
9

10
11
12

Latency (microseconds)

(c) Quadrics Elan4 using TPorts (d) Quadrics Elan4 using SHMEM

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
20
40
60
80

100
120
140
160

Latency (microseconds)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5

Latency (microseconds)

(e)Quadrics Elan4 using TPorts (no hashing) (f) InfiniBand using VAPI

Figure 3. Latency impacts as the pre-posted receive queue is varied



a match, we see the impacts of the slow network interface
processor. Each item in the queue that is traversed adds ap-
proximately 0.49µs to the latency of the message. These
are effectively increases in the gap because the queue traver-
sal is handled on the NIC. Results from the newest Quadrics
hardware (Elan4, Figures3(c) and (d)) show a completely
different picture. The TPorts interface appears to be much
faster than the SHMEM interface, even in the presence of
long queues. This inconsistency was traced to an appar-
ent addition of a hashing algorithm based on the MPI en-
velope information. Since different MPI tags were used to
select the message, the hash algorithm effectively prevented
traversing the entire queue; however, a simple change to the
benchmark (wildcarding the source address, which is a rela-
tively common application behavior) produced the graph in
Figures3(e). While the performance of the embedded mi-
croprocessor has greatly improved (dropping the penalty to
approximately 0.1µs per queue element for small queues
and 0.15µs per queue element for long queues), it still
shows a significant performance degradation when the en-
tire list must be traversed.

Figure 4(a) and (b) compare the Portals and SHMEM
communication APIs on ASCI Red in Proc 0 mode. In Proc
0 mode, all of the communication API processing is han-
dled on the application processor. This comparison high-
lights the impact of the complexity of the pre-posted receive
queue list traversal on message latency when the length of
that queue is varied. Portals, which has semantics that are
designed to handle MPI as well as other supercomputer
message traffic such as I/O, provides a rich set of queue
traversal and matching semantics. These matching seman-
tics cannot be disabled; thus, each match list item that must
be traversed adds significant overhead. For SHMEM, the
semantics are very simple and MPI must implement all of
the queue traversal and matching semantics. This allows
MPI to customize the queue traversal and matching opera-
tions to match its needs. The penalty is that features such
as independent progress and matching offload are lost. The
ultimate result is that Portals has significantly lower latency
when a small number of queue items are traversed. When
a large number of queue items are traversed, the robustness
of the portals matching semantics causes it to have a higher
overall latency.

Comparing Figure4(c) and (d) to Figure4(a) and (b)
illustrates the impact of Proc 1 mode. Proc 1 mode of-
floads the communication API onto a second processor in
an SMP configuration. Thus, all application (and MPI) pro-
cessing occur on one processor in a node while all Portals
or SHMEM processing occur on a second, equivalent pro-
cessor in the same node. When MPI uses the SHMEM API,
it sees a consistent benefit from this offloading ability. In
contrast, when MPI uses the Portals API, it sees a signifi-
cant benefit when a small number of elements are traversed

in the posted receive queue, but pays an extremely large
penalty when a large number of posted receive queue ele-
ments are traversed. This is clearly a performance bug in
the software that handles offloading for Portals; however,
it points out the complexities in properly handling such of-
floading.

5.2 Unexpected Message Queue Impacts

Unexpected message queue length impacts latency in a
slightly different way than the pre-posted queue length. The
entire unexpected message queue must be traversed each
time a receive is posted, whereas the pre-posted queue only
needs to be traversed until a match is found. Another differ-
ence is that the posting of a receive can be overlapped with
a send (and therefore partially hidden by the latency of the
physical layer) if non-blocking operations are used for both
(and the send is initiated first).

Figure5(a) shows the increase in latency as the length of
the unexpected message queue is increased for Myrinet and
InfiniBand. Note that Myrinet is relatively unaffected by the
length of the unexpected message queue. This is because,
as with the pre-posted queue traversal, all of the “work” in
MPI is performed on the host processor. For these tests, the
host processor is a multi-gigahertz Intel Pentium-4. Such
a processor is capable of traversing the unexpected mes-
sage queue quickly; thus, virtually all of the added latency
is hidden in the message transfer time. InfiniBand behaved
similarly, but, unfortunately, the InfiniBand results were cut
short at 100 unexpected messages due to an apparent bug
in the MPI library. Although the queue traversal times are
hidden from these latency tests, they are serving to increase
the overhead (from the LogP model) of the communications
beyond that required by the baseline hardware.

Figure5(b) shows the increase in latency as the length
of the unexpected message queue is increased for Quadrics
Elan3 and the custom network on ASCI Red. For Quadrics
Elan3 using MPI over the TPorts API, latency increases by
approximately 0.1µs for each additional item in the un-
expected queue (with large numbers of unexpected mes-
sages — at small numbers of unexpected messages, much
of this increase is hidden by message transfer time). This
is because Quadrics offloads unexpected message handling
and must traverse the unexpected queue with the relatively
slow embedded processor on the card each time a receive
is posted. This leads to an increase in the LogP “gap”
while the card is busy processing the incoming message.
The curve for Quadrics using MPI over the SHMEM API
shows a striking difference from the TPorts results. When
unexpected queue processing occurs on the host, relatively
little impact is seen on the latency — even with 1000 un-
expected messages in the unexpected message queue. This
is simply a matter of using a faster processor with a larger



Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
50

100
150
200
250
300

Latency (microseconds)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

20
40
60
80

100
120
140

Latency (microseconds)

(a) ASCI Red/Portals/Proc0 (b) ASCI Red/SHMEM/Proc0

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

0
100
200
300
400
500
600

Latency (microseconds)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

20
40
60
80

100
120
140

Latency (microseconds)

(c) ASCI Red/Portals/Proc1 (d) ASCI Red/SHMEM/Proc1

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

9.5
10

10.5
11

11.5
12

12.5
13

13.5
14

14.5

Latency (microseconds)

Latency

0
200

400
600

800
1000

Receives Preposted 0
20

40
60

80
100

Percent Traversed

5
6
7
8
9

10
11
12
13

Latency (microseconds)

(e)Myrinet Lanai9 GM (f) Myrinet LanaiX GM

Figure 4. Latency impacts as the pre-posted receive queue is varied



0

20

40

60

80

100

120

0 200 400 600 800 1000

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

Unexpected Messages

Quadrics Elan4 - TPorts
Quadrics Elan4 - SHMEM

Myrinet Lanai9 - GM
Myrinet LanaiX - GM

Infiniband - VAPI

0

50

100

150

200

250

300

350

0 200 400 600 800 1000

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

Unexpected Messages

Quadrics Elan3 - TPorts
Quadrics Elan3 - SHMEM

ASCI Red CNIC - Portals - Proc 0
ASCI Red CNIC - SHMEM - Proc 0

ASCI Red CNIC - Portals - Proc 1
ASCI Red CNIC - SHMEM - Proc 1

(a) (b)

Figure 5. Latency impacts as the unexpected queue is varied

cache to perform the exact same list processing. This be-
havior changes little when moving to Quadrics Elan4 (Fig-
ure 5(a)); however, minimum latencies were used for the
Quadrics Elan4 TPorts data due to unexplained variability
in our current hardware platform. This is simply an issue
with a new system that has not been fully brought up yet.

Results from ASCI Red, shown in Figure5(b), explore
issues of both protocol complexity and network integra-
tion. ASCI Red makes available two communication APIs
— Portals, which provides a rich set of semantics includ-
ing much of the queue processing needed by MPI, and the
lightweight Cray SHMEM interface. Comparing Portals
performance to SHMEM performance, it is clear that the
rich semantics of Portals come at a cost. Although Por-
tals performs better when there is a small number of unex-
pected messages, the robust matching semantics provided
by Portals cause it to yield higher latency when there is a
large number of unexpected messages. The second interest-
ing feature of this graph is the comparison of Proc 0 and
Proc 1 modes. When offloading the communications API
to a second (equally fast) processor in an SMP node (Proc 1
mode), both Portals and SHMEM have better performance
with small numbers (under 100) of unexpected messages.
As the number of unexpected messages grows large, how-
ever, Portals (which offloads matching to the second pro-
cessor) ramps up to significantly higher latencies than Proc
0 mode while SHMEM (which performs queue processing
on the application processor) continues to see an advantage
from Proc 1 mode. For Portals, there seems to be a detri-
mental impact from the interaction of the two processors for
longer unexpected message queues. While this is clearly
a performance bug in Portals offloading software, it high-
lights an issue that is easy to implement badly in offloading

scenarios.

6 Conclusions

Two new benchmarks were introduced to evaluate MPI
latency in more realistic usage scenarios. These bench-
marks highlight the key weakness in networks that offload
protocol processing onto the network interface: the network
interface processor is typically much slower than the host
processor. Thus, under some usage scenarios, they have
much poorer performance than competing networks that use
the host processor for these tasks. Specifically, InfiniBand
and Myrinet perform as much as an order of magnitude
better than Quadrics when MPI queues are lengthy. Sim-
ilarly, the weight of the protocol underlying MPI can sig-
nificantly increase latency when longer MPI queues occur.
When combined with application analysis[6] that indicates
that longer queues sometimes occur, this suggests that more
processing power needs to be allocated to network func-
tions.

7 Future Work

This work is part of a broader overall effort to charac-
terize applications and to develop successful benchmarking
techniques. Future efforts will include further analysis of
application codes to explore how MPI is used. In addition,
these benchmarks will be enhanced and other benchmarks
will be designed to test systems under typical usage sce-
narios. New benchmark development efforts will include a
focus on key network features such as measuring the abil-
ity to overlap communications and computation. In addi-
tion, network bandwidth under typical loads (e.g. receiving



from multiple simultaneous sources) will be tested. Finally,
the benchmarking of collective operations will be investi-
gated. Collective benchmarks are particularly unrealistic in
that they measure the time to perform a large number of
consecutive operations. This is yet another benchmarking
scenario that never occurs in practice.

References

[1] Netperf. http://www.netperf.org .
[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and

C. Sheiman. LogGP: Incorporating long messages into the
LogP model. Journal of Parallel and Distributed Comput-
ing, 44(1):71–79, 1997.

[3] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Hus-
bands, C. Iancu, M. Welcome, and K. Yelick. An eval-
uation of current high-performance networks. In17th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’03), Apr. 2003.

[4] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W.-K. Su. Myrinet: A gigabit-per-second
local area network.IEEE Micro, 15(1):29–36, Feb. 1995.

[5] R. Brightwell. A new MPI implementation for Cray
SHMEM. Technical report, Sandia National Laboratories.
Work in progress.

[6] R. Brightwell and K. D. Underwood. An analysis of NIC
resource usage for offloading MPI. InProceedings of the
2002 Workshop on Communication Architecture for Clus-
ters, Santa Fe, NM, April 2004.

[7] Cray Research, Inc.SHMEM Technical Note for C, SG-2516
2.3, October 1994.

[8] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
Logp: Towards a realistic model of parallel computation. In
Proceedings 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 1–12, 1993.

[9] Infiniband Trade Association.http://www.infinibandta.org,
1999.

[10] W. Lawry, C. Wilson, A. B. Maccabe, and R. Brightwell.
COMB: A portable benchmark suite for assessing MPI over-
lap. In IEEE International Conference on Cluster Comput-
ing, September 2002. Poster paper.

[11] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini,
W. Yu, D. Buntinas, P. Wyckoff, and D. K. Panda. Per-
formance comparison of MPI implementations over Infini-
Band, Myrinet and Quadrics. InThe International Con-
ference for High Performance Computing and Communica-
tions (SC2003), November 2003.

[12] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High
performance RDMA-based MPI implementation over Infini-
Band. InProceedings of the 2003 International Conference
on Supercomputing (ICS-03), pages 295–304, New York,
June 23–26 2003. ACM Press.

[13] A. B. Maccabe, R. Riesen, and D. W. van Dresser. Dynamic
processor modes in Puma.Bulletin of the Technical Com-
mittee on Operating Systems and Application Environments
(TCOS), 8(2):4–12, 1996.

[14] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Ander-
son. Effects of communication latency, overhead, and band-
width in a cluster architecture. InProceedings of the 24th
Annual International Symposium on Computer Architecture,
June 1997.

[15] Myricom, Inc. The GM Message Passing System. Technical
report, Myricom, Inc., 1997.

[16] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. The Quadrics network: High-performance cluster-
ing technology.IEEE Micro, 22(1):46–57, January/February
2002.

[17] R. Riesen, R. Brightwell, and A. B. Maccabe. Measur-
ing MPI latency variance. In J. Dongarra, D. Laforenza,
and S. Orlando, editors,Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface: 10th Eu-
ropean PVM/MPI Users’ Group Meeting, Venice, Italy,
September/October 2003 Proceedings, volume 2840 ofLec-
ture Notes in Computer Science, pages 112–116. Springer-
Verlag, 2003.

[18] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Mac-
cabe, L. A. Fisk, and T. M. Stallcup. The Puma operating
system for massively parallel computers. InProceeding of
the 1995 Intel Supercomputer User’s Group Conference. In-
tel Supercomputer User’s Group, 1995.

[19] Q. Snell, A. Mikler, and J. Gustafson. NetPIPE: A Network
Protocol Independent Performance Evaluator . InProceed-
ings of the IASTED International Conference on Intelligent
Information Management and Systems, June 1996.

[20] S. R. W. Timothy G. Mattson, David Scott. A TeraFLOPS
Supercomputer in 1996: The ASCI TFLOP System. InPro-
ceedings of the 1996 International Parallel Processing Sym-
posium, 1996.

http://www.netperf.org

	Introduction
	Related Work
	Benchmarks
	Pre-posted Receive Queue Impact
	Unexpected Message Queue Impact

	Experimental Platforms
	Results
	Pre-posted Queue Impacts
	Unexpected Message Queue Impacts

	Conclusions
	Future Work

